Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
J. appl. oral sci ; 27: e20170449, 2019. tab, graf
Article in English | LILACS, BBO | ID: biblio-975886

ABSTRACT

Abstract The stable long-term performance of resin cement under oral environmental conditions is a crucial factor to obtain a satisfactory success of the allceramic dental restoration. Objective: This study aimed at evaluating and comparing the surface morphology and mechanical property of conventional and self-adhesive resin cement after aqueous aging. Materials and Methods: Disc-shaped specimens of 3 conventional (C1: Multilink N, C2: Duolink, C3: Nexus 3) and 3 self-adhesive (S1: Multilink Speed, S2: Biscem, S3: Maxcem) types of resin cements were subjected to irradiation. After 24 h, the Knoop microhardness of each resin cement was evaluated. The specimens were immersed separately in distilled water and maintained at 37°C. A total of 5 specimens of each resin cement were collected at the following time intervals of immersion: 1, 6, 12 and 18 months. The samples were used to evaluate the Knoop parameters of microhardness, sorption and solubility. The surface morphology of the specimens after 18 months of immersion was observed by scanning electron microscopy. The sorption and solubility data were analyzed by two-way ANOVA. The Knoop microhardness was tested by the ANOVA repeated measures (P<0.05). Results: The sorption and solubility parameters of C1 and S1 exhibited significant fluctuations during the aqueous aging. The hardness of the S1 and S2 specimens decreased significantly after an 18-month water immersion. The S1, S2 and S3 specimens indicated higher filler exposure and stripping and apparent pores and cracks compared to specimens C1, C2 and C3, respectively. Conclusion: The surface of selfadhesive resin cements is more susceptible to aqueous damage than that of the conventional resin cements.


Subject(s)
Water/chemistry , Composite Resins/chemistry , Resin Cements/chemistry , Solubility , Surface Properties , Time Factors , Materials Testing , Microscopy, Electron, Scanning , Reproducibility of Results , Analysis of Variance , Hardness Tests , Immersion
2.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 779-784, 2018.
Article in Chinese | WPRIM | ID: wpr-758032

ABSTRACT

Objective@# To provide a clinical reference by evaluating the restorative results of an accurate impression technique for distal-extension removable partial dentures.@*Methods@#Forty-two patients with free-end dentition defects who visited the Prosthodontic Department of Nanjing Stomatological Hospital, Medical School of Nanjing University, between April 2017 and January 2018 were selected. The final impression was made by an accurate impression technique to fabricate fifty-two removable partial dentures with casting frameworks. The restorative result was judged by clinical examination and patient feedback immediately after wearing dentures and at 1 week, 3 months and 6 months.@*Results@#All fifty-two dentures for forty-two patients were seated successfully, with good retention and stability. Complications occurred throughout the 6-month follow-up, including 4 cases of mucous pain, 4 cases of retention force attenuation and 1 case of abutment fracture. There were no periodontics problems. The dentures garnered high patient satisfaction.@*Conclusion@#The accurate impression technique for distal-extension removable partial dentures showed good clinical results in this follow-up investigation.

3.
J. appl. oral sci ; 22(1): 44-51, Jan-Feb/2014. tab, graf
Article in English | LILACS, BBO | ID: lil-699917

ABSTRACT

Objective: The purpose of this study was to evaluate the Knoop hardness number (KHN) of dual-cured core build-up resin composites (DCBRCs) at 6 depths of cavity after 3 post-irradiation times by 4 light-exposure methods. Material and Methods: Five specimens each of DCBRCs (Clearfil DC Core Plus [DCP] and Unifil Core EM [UCE]) were filled in acrylic resin blocks with a semi-cylindrical cavity and light-cured using an LED light unit (power density: 1,000 mW/cm2)at the top surface by irradiation for 20 seconds (20 s), 40 seconds (40 s), bonding agent plus 20 seconds (B+20 s), or 40 seconds plus light irradiation of both sides of each acrylic resin block for 40 seconds each (120 s). KHN was measured at depths of 0.5, 2.0, 4.0, 6.0, 8.0, and 10.0 mm at 0.5 hours, 24 hours, and 7 days post-irradiation. Statistical analysis was performed using repeated measures ANOVA and Tukey's compromise post-hoc test with a significance level of p<0.05. Results: For both DCBRCs, at 0.5 hours post-irradiation, the 20 s and 40 s methods showed the highest KHN at depth of 0.5 mm. The 40 s method showed significantly higher KHN than the 20 s method at all depths of cavity and post-irradiation times, except UCE at depth of 0.5 mm (p<0.05). The 120 s method did not result in significantly different KHN at all depths of cavity and post-irradiation times (p>0.05). In DCP, and not UCE, at 24 hours and 7 days post-irradiation, the B+20 s method showed significantly higher KHN at all depths of cavity, except the depth of 0.5 mm (p<0.05). Conclusion: KHN depends on the light-exposure method, use of bonding agent, depth of cavity, post-irradiation time, and material brand. Based on the microhardness behavior, DCBRCs are preferably prepared by the effective exposure method, when used for a greater depth of cavity. .


Subject(s)
Composite Resins/radiation effects , Hardness Tests , Light-Curing of Dental Adhesives/methods , Resin Cements/radiation effects , Analysis of Variance , Composite Resins/chemistry , Materials Testing , Photochemical Processes/radiation effects , Polymerization/radiation effects , Reproducibility of Results , Resin Cements/chemistry , Surface Properties/radiation effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL